一起品玩 首页 头条 查看内容

DARPA投资数百万美元支持脑机接口技术新项目

2019-6-6 15:35| 发布者: tatagame| 查看: 331| 评论: 0

当埃隆·马斯克(Elon Musk)和美国国防部高级研究计划局(DARPA)都登上了电子人hypetrain,你就知道脑机接口(BMIs)即将实现不可能的事情。

BMIs已经是科幻小说里的东西了,它促进了生物湿件与外部计算机之间的交流,把人类用户变成了真正的半机器人。然而,精神控制的机械手臂、微电极“神经贴片”或“记忆创可贴”仍只是针对神经系统受损者的实验性医疗手段。

通过下一代非手术神经技术(N3)项目,DARPA希望将BMIs扩展到军事领域。本月,该项目邀请了6个学术团队来设计完全不同的BMIs,将机器与健全士兵的大脑连接起来。我们的目标是彻底放弃手术,同时尽量减少任何生物干预,将大脑和机器连接起来。

目前,微电极被外科手术植入大脑,以劫持神经通讯。该项目的目标不是微电极,而是声学信号、电磁波、纳米技术、基因增强的神经元,以及用于下一代BMIs的红外光束。

这是对现行协议的根本性背离,可能会带来令人震惊或毁灭性的影响。无线BMIs可以极大地增强患有神经损伤或创伤后应激障碍(PTSD)的退伍军人的身体功能,或者让一名士兵用他或她的大脑控制一群具有ai功能的无人机。或者,就像《黑镜》(Black Mirror)中《男人与火》(Men Against Fire)中的情节一样,它可能会模糊士兵的认知,让他们远离战争带来的情感负罪感。

当这些新技术逐渐应用到民用领域时,它们将给医疗带来革命性的变化。或者他们可以用一种不可思议的强大工具来激发超人类主义运动,从而从根本上改变社会——无论好坏。

以下是你需要知道的。

激进的升级

为期四年的N3项目主要关注两个方面:非侵入性和“微小的”侵入性神经接口,用于读取和写入大脑。

由于非侵入性技术位于头皮上,它们的传感器和刺激器可能会测量整个神经元网络,比如控制运动的神经元网络。这些系统可以让士兵遥控无人机、救援机器人或波士顿动力公司(Boston Dynamics)的“大狗”(BigDog)等航空母舰上的机器人。该系统甚至可以促进多任务潜行——即同时控制多种武器——就像身体健全的人除了自己的两只手臂外,还可以操作第三只机械手臂一样。

相反,微小的侵入性技术允许科学家无需手术就能传递纳米传感器:例如,注射一种携带光敏传感器的病毒,或其他化学、生物技术或自组装纳米机器人,它们可以到达单个神经元,在不损害敏感组织的情况下独立控制它们的活动。这些技术的用途还没有明确的规定,但正如动物实验所显示的那样,控制单个神经元在多个点的活动,就足以将有关恐惧、欲望和经历的人工记忆直接输入大脑。

美国国防部高级研究计划局在去年年初发布的资助简报中写道:“一个神经界面能够使身体健全的作战人员快速、有效、直观地与军事系统进行免提交互,这是该项目的最终目标。”

唯一将被考虑的技术必须有一条最终用于健康人体的可行路径。

“最终的N3交付物将包括一个完整的集成双向脑机接口系统,”项目描述说。这不仅包括硬件,还包括为这些系统量身定制的新算法,并在“国防部相关应用程序”中进行了演示。

工具

BMI交易的常用工具,包括微电极、核磁共振(MRI)或经颅磁刺激(TMS),一开始就被排除在外。这些流行的技术依赖于外科手术、重型机械或人员来维持在现实世界中不太可能出现的静止状态。

这六支团队将利用三种不同的自然现象进行交流:磁力、光束和声波。

例如,莱斯大学的雅各布·罗宾逊博士正在将基因工程、红外激光束和纳米磁悬浮技术结合起来,形成一个双向系统。这个耗资1800万美元的项目名为MOANA(磁性、光学和声学神经通路设备),它利用病毒将两个额外的基因送入大脑。其中一种编码一种位于神经元顶端的蛋白质,当细胞激活时会发出红外线。红色和红外光可以穿透头骨。这使得内置了光发射器和探测器的头盖骨能够接收到这些信号,以便随后解码。研究小组解释说,超高速的utrac -sensitvie光电探测器将进一步使帽子忽略散射的光线,并从大脑的目标部位梳理出相关信号。

另一种新基因帮助将指令写入大脑。这种蛋白质将铁纳米粒子与神经元的激活机制联系在一起。使用耳机上的磁线圈,研究小组就可以在不打扰其他神经元的情况下,远程刺激磁性超级神经元。尽管研究小组计划从细胞培养和动物实验开始,但他们的目标是最终将视觉图像从一个人传到另一个人。罗宾森说:“四年后,我们希望能在不做脑部手术的情况下,展示大脑与大脑之间以思维速度进行的直接沟通。”

N3的其他项目只是雄心勃勃。

例如,卡耐基梅隆大学的研究小组计划使用超声波来精确定位目标大脑区域的光相互作用,然后可以通过一顶可穿戴的“帽子”来测量。为了在大脑中写入信息,他们提出了一种灵活的、可穿戴的微型发电机,它可以抵消头盖骨和头皮的噪音影响,针对特定的神经群。

同样,约翰霍普金斯大学的一个研究小组也在测量大脑中光路的变化,以将其与大脑中“阅读”湿件指令的区域活动联系起来。

相比之下,Teledyne科学与成像小组正转向微型光能“磁力仪”,以探测神经元在放电时产生的小的局部磁场,并将这些信号与大脑输出匹配起来。

非营利的Battelle团队的“头脑风暴”纳米传感器变得更加新奇:磁性纳米颗粒包裹在压电外壳中。外壳可以将神经元发出的电信号转换成磁性信号,反之亦然。这使得外部收发器可以无线接收转换后的信号,并通过双向高速公路刺激大脑。

这些磁力仪可以通过鼻喷剂或其他非侵入性方法进入大脑,并通过磁性引导进入目标大脑区域。当不再需要它们时,它们可以再次被引导出大脑,进入血液,在那里,身体可以不受伤害地排出它们。

四年的奇迹

Mind-blown吗?是的,一样的。然而,团队所面临的挑战是巨大的。

DARPA宣称的目标是将大脑中至少16个位置与BMI联系起来,滞后小于50毫秒——这相当于人类视觉感知的平均水平。对于位于大脑外部的设备来说,无论在空间还是时间上,这都是非常高的分辨率。脑组织、血管、头皮和头骨都是分散和消散神经信号的屏障。所有六支团队都需要找出计算强度最小的方法,从背景噪音中提取出相关的大脑信号,并将它们三角定位到适当的大脑区域,以破译意图。

从长远来看,四年的时间和每个项目平均2000万美元的投入并不足以改变我们与机器之间的关系——无论是好是坏。值得称道的是,DARPA敏锐地意识到远程大脑控制可能被滥用。该项目由一个具有生物伦理问题专业知识的外部顾问小组指导。尽管DARPA的重点是让身体健全的士兵能够更好地应对战斗挑战,但很难说无线、非侵入性的BMIs也会让那些最需要帮助的人受益:退伍军人和其他神经受损的人。为此,该项目正与FDA紧密合作,以确保其符合人类使用的安全性和有效性法规。

仅仅四年我们就能到达那里吗?我持怀疑态度。但是这些电的、光学的、声学的、磁性的和遗传的BMIs,尽管听起来很疯狂,似乎是不可避免的。

N3项目经理Al Emondi说:“DARPA正在为一个未来做准备,在这个未来,无人系统、人工智能和网络操作的结合可能会导致冲突在时间上展开,而人类仅凭现有技术无法有效管理这些时间线。”

问题是,既然我们已经知道未来会发生什么,我们其他人应该如何准备?

英文版(原文)

DARPA’s New Project Is Investing Millions in Brain-Machine Interface Tech

  • 2019-06-05

  •  
  • 来源:singularityhub

  • When Elon Musk and DARPA both hop aboard the cyborg hypetrain, you know brain-machine interfaces (BMIs) are about to achieve the impossible.

    BMIs, already the stuff of science fiction, facilitate crosstalk between biological wetware with external computers, turning human users into literal cyborgs. Yet mind-controlled robotic arms, microelectrode “nerve patches”, or “memory Band-Aids” are still purely experimental medical treatments for those with nervous system impairments.

    With the Next-Generation Nonsurgical Neurotechnology (N3) program, DARPA is looking to expand BMIs to the military. This month, the project tapped six academic teams to engineer radically different BMIs to hook up machines to the brains of able-bodied soldiers. The goal is to ditch surgery altogether—while minimizing any biological interventions—to link up brain and machine.

    Rather than microelectrodes, which are currently surgically inserted into the brain to hijack neural communication, the project is looking to acoustic signals, electromagnetic waves, nanotechnology, genetically-enhanced neurons, and infrared beams for their next-gen BMIs.

    It’s a radical departure from current protocol, with potentially thrilling—or devastating—impact. Wireless BMIs could dramatically boost bodily functions of veterans with neural damage or post-traumatic stress disorder (PTSD), or allow a single soldier to control swarms of AI-enabled drones with his or her mind. Or, similar to the Black Mirror episode Men Against Fire, it could cloud the perception of soldiers, distancing them from the emotional guilt of warfare.

    When trickled down to civilian use, these new technologies are poised to revolutionize medical treatment. Or they could galvanize the transhumanist movement with an inconceivably powerful tool that fundamentally alters society—for better or worse.

    Here’s what you need to know.

    Radical Upgrades

    The four-year N3 program focuses on two main aspects: noninvasive and “minutely” invasive neural interfaces to both read and write into the brain.

    Because noninvasive technologies sit on the scalp, their sensors and stimulators will likely measure entire networks of neurons, such as those controlling movement. These systems could then allow soldiers to remotely pilot robots in the field—drones, rescue bots, or carriers like Boston Dynamics’ BigDog. The system could even boost multitasking prowess—mind-controlling multiple weapons at once—similar to how able-bodied humans can operate a third robotic arm in addition to their own two.

    In contrast, minutely invasive technologies allow scientists to deliver nanotransducers without surgery: for example, an injection of a virus carrying light-sensitive sensors, or other chemical, biotech, or self-assembled nanobots that can reach individual neurons and control their activity independently without damaging sensitive tissue. The proposed use for these technologies isn’t yet well-specified, but as animal experiments have shown, controlling the activity of single neurons at multiple points is sufficient to program artificial memories of fear, desire, and experiences directly into the brain.

    “A neural interface that enables fast, effective, and intuitive hands-free interaction with military systems by able-bodied warfighters is the ultimate program goal,” DARPA wrote in its funding brief, released early last year.

    The only technologies that will be considered must have a viable path toward eventual use in healthy human subjects.

    “Final N3 deliverables will include a complete integrated bidirectional brain-machine interface system,” the project description states. This doesn’t just include hardware, but also new algorithms tailored to these system, demonstrated in a “Department of Defense-relevant application.”

    The Tools

    Right off the bat, the usual tools of the BMI trade, including microelectrodes, MRI, or transcranial magnetic stimulation (TMS) are off the table. These popular technologies rely on surgery, heavy machinery, or personnel to sit very still—conditions unlikely in the real world.

    The six teams will tap into three different kinds of natural phenomena for communication: magnetism, light beams, and acoustic waves.

    Dr. Jacob Robinson at Rice University, for example, is combining genetic engineering, infrared laser beams, and nanomagnets for a bidirectional system. The $18 million project, MOANA (Magnetic, Optical and Acoustic Neural Access device) uses viruses to deliver two extra genes into the brain. One encodes a protein that sits on top of neurons and emits infrared light when the cell activates. Red and infrared light can penetrate through the skull. This lets a skull cap, embedded with light emitters and detectors, pick up these signals for subsequent decoding. Ultra-fast and utra-sensitvie photodetectors will further allow the cap to ignore scattered light and tease out relevant signals emanating from targeted portions of the brain, the team explained.

    The other new gene helps write commands into the brain. This protein tethers iron nanoparticles to the neurons’ activation mechanism. Using magnetic coils on the headset, the team can then remotely stimulate magnetic super-neurons to fire while leaving others alone. Although the team plans to start in cell cultures and animals, their goal is to eventually transmit a visual image from one person to another. “In four years we hope to demonstrate direct, brain-to-brain communication at the speed of thought and without brain surgery,” said Robinson.

    Other projects in N3 are just are ambitious.

    The Carnegie Mellon team, for example, plans to use ultrasound waves to pinpoint light interaction in targeted brain regions, which can then be measured through a wearable “hat.” To write into the brain, they propose a flexible, wearable electrical mini-generator that counterbalances the noisy effect of the skull and scalp to target specific neural groups.

    Similarly, a group at Johns Hopkins is also measuring light path changes in the brain to correlate them with regional brain activity to “read” wetware commands.

    The Teledyne Scientific & Imaging group, in contrast, is turning to tiny light-powered “magnetometers” to detect small, localized magnetic fields that neurons generate when they fire, and match these signals to brain output.

    The nonprofit Battelle team gets even fancier with their ”BrainSTORMS” nanotransducers: magnetic nanoparticles wrapped in a piezoelectric shell. The shell can convert electrical signals from neurons into magnetic ones and vice-versa. This allows external transceivers to wirelessly pick up the transformed signals and stimulate the brain through a bidirectional highway.

    The magnetometers can be delivered into the brain through a nasal spray or other non-invasive methods, and magnetically guided towards targeted brain regions. When no longer needed, they can once again be steered out of the brain and into the bloodstream, where the body can excrete them without harm.

    Four-Year Miracle

    Mind-blown? Yeah, same. However, the challenges facing the teams are enormous.

    DARPA’s stated goal is to hook up at least 16 sites in the brain with the BMI, with a lag of less than 50 milliseconds—on the scale of average human visual perception. That’s crazy high resolution for devices sitting outside the brain, both in space and time. Brain tissue, blood vessels, and the scalp and skull are all barriers that scatter and dissipate neural signals. All six teams will need to figure out the least computationally-intensive ways to fish out relevant brain signals from background noise, and triangulate them to the appropriate brain region to decipher intent.

    In the long run, four years and an average $20 million per project isn’t much to potentially transform our relationship with machines—for better or worse. DARPA, to its credit, is keenly aware of potential misuse of remote brain control. The program is under the guidance of a panel of external advisors with expertise in bioethical issues. And although DARPA’s focus is on enabling able-bodied soldiers to better tackle combat challenges, it’s hard to argue that wireless, non-invasive BMIs will also benefit those most in need: veterans and other people with debilitating nerve damage. To this end, the program is heavily engaging the FDA to ensure it meets safety and efficacy regulations for human use.

    Will we be there in just four years? I’m skeptical. But these electrical, optical, acoustic, magnetic, and genetic BMIs, as crazy as they sound, seem inevitable.

    “DARPA is preparing for a future in which a combination of unmanned systems, AI, and cyber operations may cause conflicts to play out on timelines that are too short for humans to effectively manage with current technology alone,” said Al Emondi, the N3 program manager.

    The question is, now that we know what’s in store, how should the rest of us prepare?


    路过

    雷人

    握手

    鲜花

    鸡蛋